 350MHz／250MHz，2－Channel Video Multiplexer－Amplifiers

The MAX4158／MAX4159／MAX4258／MAX4259 are wide－ band，2－channel，noninverting video amplifiers with input multiplexing，capable of driving $\pm 2.5 \mathrm{~V}$ signals into 50Ω or 75Ω loads．These devices are current－mode feedback amplifiers；gain is set by external feedback resistors．The MAX4158／MAX4159 are optimized for unity gain（0dB） with a－3dB bandwidth of 350 MHz ．The MAX4258／ MAX4259 are optimized for gains of two（6dB）or more with a $250 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth．These devices have low $\left(0.01 \% / 0.01^{\circ}\right)$ differential gain and phase errors，and oper－ ate from $\pm 5 \mathrm{~V}$ supplies．

These devices are ideal for use in broadcast and graphics video systems because of their low， $2 p \mathrm{FF}$ input capaci－ tance，channel－to－channel switching time of only 20 ns ， and wide， 130 MHz 0.1 dB bandwidth．In addition，the com－ bination of ultra－high speed and low power makes them suitable for use in general－purpose high－speed applica－ tions，such as medical imaging，industrial instrumentation， and communications systems．
The MAX4159／MAX4259 have address latching and high－ impedance output disabling，allowing them to be incorpo－ rated into large switching arrays．They are available in 14－pin SO and 16－pin QSOP packages．The MAX4158／ MAX4258 have no address latching or output disabling， but are available in space－saving 8－pin $\mu \mathrm{MAX}$ and SO packages．

Applications
Video－Signal Multiplexing
Video Crosspoint Switches
Pixel Switching
Coaxial Cable Drivers
Workstations
High－Definition TV（HDTV）
Broadcast Video
Multimedia Products
High－Speed Signal Processing
－Excellent Video Specifications：
0.1 dB Gain Flatness to 130 MHz $0.01 \% / 0.01^{\circ}$ Differential Gain／Phase Error
－High Speed：
$350 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth（MAX4158／4159）
250 MHz －3dB Bandwidth（MAX4258／4259）
700V／μ s Slew Rate（MAX4158／4159）
1000V／$\mu \mathrm{s}$ Slew Rate（MAX4258／4259）
20ns Settling Time to 0．1\％
－Fast Switching：
20ns Channel－Switching Time ＜70mV Switching Transient
－Low Power：100mW
－Directly Drive 75Ω or 50Ω Cables
－High Output Current Drive：＞70mA
－Address Latch and High－Z Output Disable
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX4158ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4158EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8μ MAX
MAX4159ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX4159EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4258ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4258EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8μ MAX
MAX4259ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX4259EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

Pin Configurations

Pin Configurations continued at end of data sheet．

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (V+ to GND) \qquad
Negative Supply Voltage (V- to GND).$+6 \mathrm{~V}$

FB Current .. $\pm 20 \mathrm{~mA}$
Digital Input Voltage (AO, EN, or LE) \qquad 0.3 V to $(\mathrm{V}++0.3 \mathrm{~V})$ Output Short Circuit to GND (Note 1). \qquadContinuous
Output Short-Circuit Current to V+, V- (Note 1) \qquad

Note 1: Continuous power dissipation maximum rating must also be observed.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC CHARACTERISTICS (Note 3)						
Logic-Low Threshold	$\mathrm{V}_{\text {IL }}$				0.8	V
Logic-High Threshold	V_{IH}		2.0			V
Logic-Low Input Current	IIL	$\mathrm{V}_{\mathrm{IL}}=0$		-2	-20	$\mu \mathrm{A}$
Logic-High Input Current	IIH	$\mathrm{V}_{\mathrm{IH}}=5.5 \mathrm{~V}, \mathrm{~V}+=+5.5 \mathrm{~V}$		130	300	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS—MAX4158/MAX4159

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AMPLIFIER CHARACTERISTICS						
-3dB Bandwidth	BW	$\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{mVp}-\mathrm{p}$ (Note 4)		350		MHz
Bandwidth for $\pm 0.1 \mathrm{~dB}$ Gain Flatness	BW(0.1)	$A \mathrm{~V}=0 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{mVp}-\mathrm{p}$ (Note 4)		100		MHz
Full-Power Bandwidth	FPBW	$A \mathrm{~V}=0 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ (Note 4)		155		MHz
Slew Rate	SR	$\mathrm{AV}=0 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ (Note 4)		700		V/ s
Settling Time to 0.1\%	ts	Vout $=2 \mathrm{~V}$ step, $\mathrm{AV}=0 \mathrm{~dB}$ (Note 4)		10		ns
Differential Gain Error	DG	$\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}$ (Notes 4,5)		0.01		\%
Differential Phase Error	DP	AV $=0 \mathrm{~dB}$ (Notes 4,5)		0.01		degrees
Channel-to-Channel Crosstalk	Xtalk	$\begin{aligned} & f=30 \mathrm{MHz}, \mathrm{Rs}=50 \Omega, \mathrm{Av}=0 \mathrm{~dB}, \\ & \mathrm{VIN}= \pm 2 \mathrm{Vp}-\mathrm{p}(\text { Note } 4) \end{aligned}$		70		dB
Output Impedance	ZOUT	$\mathrm{f}=30 \mathrm{MHz}, \mathrm{AV}=0 \mathrm{~dB}$ (Note 4)		9		Ω
Total Harmonic Distortion	THD	$\begin{aligned} & f=30 \mathrm{MHz}, \text { VouT }=2 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{AV}=0 \mathrm{~dB}(\text { Note } 4) \end{aligned}$		50		dBc
Off-Isolation (MAX4159 only)	Also	$\begin{aligned} & f=30 \mathrm{MHz}, \mathrm{AV}=0 \mathrm{~dB}, \overline{\mathrm{EN}}=5 \mathrm{~V}, \\ & \mathrm{VIN}= \pm 2 \mathrm{Vp}-\mathrm{p}(\text { Note } 4) \end{aligned}$		105		dB
Output Capacitance	Cout			3		pF
Input Capacitance	CIN	Channel on or off		2		pF
Input Voltage-Noise Density	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$		2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density	i_{n}	$\mathrm{f}=100 \mathrm{kHz}$		2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
FB Current-Noise Density	$\mathrm{in}_{\mathrm{n}}(\mathrm{FB})$	$\mathrm{f}=100 \mathrm{kHz}$		22		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
SWITCHING CHARACTERISTICS						
Channel Switching Time	tsw	(Notes 6, 7)		20		ns
Address Setup Time	ts	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Notes 6, 8)	10			ns
Address Hold Time	tTH	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Notes 6, 8)	10			ns
Latch Propagation Delay	tLPD	(Note 6)		20		ns
Latch Pulse Width	tLPW	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Notes 6, 8)	10			ns
Enable Delay Time	tpDE	(Notes 6, 9)		20		ns
Disable Delay Time	tPDD	(Notes 6, 9)		20		ns
Switching Transient	VTRAN	AV $=0 \mathrm{~dB}$ (Notes 4, 10)		± 70		mV

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

AC ELECTRICAL CHARACTERISTICS—MAX4258/MAX4259
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
AMPLIFIER CHARACTERISTICS					
-3dB Bandwidth	BW	$\mathrm{AV}=6 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{mVp}-\mathrm{p}$ (Note 4)	250		MHz
Bandwidth for $\pm 0.1 \mathrm{~dB}$ Gain Flatness	BW(0.1)	$A \mathrm{~V}=6 \mathrm{~dB}, \mathrm{~V}_{\text {IN }}=20 \mathrm{mVp}-\mathrm{p}$ (Note 4)	130		MHz
Full-Power Bandwidth	FPBW	$A \mathrm{~V}=6 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ (Note 4)	200		MHz
Slew Rate	SR	$A \mathrm{~V}=6 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$ (Note 4)	1000		V/ $/ \mathrm{s}$
Settling Time to 0.1\%	ts	Vout $=2 \mathrm{~V}$ step, $\mathrm{AV}=6 \mathrm{~dB}$ (Note 4)	10		ns
Differential Gain Error	DG	Av = 6dB (Notes 4, 5)	0.01		\%
Differential Phase Error	DP	$\mathrm{AV}=6 \mathrm{~dB}$ (Notes 4, 5)	0.02		degrees
Channel-to-Channel Crosstalk	Xtalk	$\begin{aligned} & f=30 \mathrm{MHz}, \mathrm{RS}=50 \Omega, \mathrm{AV}=6 \mathrm{~dB}, \\ & \mathrm{VIN}= \pm 1 \mathrm{Vp}-\mathrm{p}(\text { Note 4) } \end{aligned}$	70		dB
Output Impedance	ZOUT	$\mathrm{f}=30 \mathrm{MHz}, \mathrm{Av}=6 \mathrm{~dB}$ (Note 4)	9		Ω
Total Harmonic Distortion	THD	$\begin{aligned} & \mathrm{f}=30 \mathrm{MHz}, \text { VouT }=2 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{AV}=6 \mathrm{~dB}(\text { Note } 4) \end{aligned}$	50		dBc
Off-Isolation (MAX4259)	AISO	$\begin{aligned} & \mathrm{f}=30 \mathrm{MHz}, \mathrm{AV}=6 \mathrm{~dB}, \overline{\mathrm{EN}}=5 \mathrm{~V}, \\ & \mathrm{VIN}= \pm 1 \mathrm{Vp}-\mathrm{p}(\text { Note } 4) \end{aligned}$	110		dB
Output Capacitance	Cout		3		pF
Input Capacitance	CIN	Channel on or off	2		pF
Input Voltage-Noise Density	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$	2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current-Noise Density	in_{n}	$\mathrm{f}=100 \mathrm{kHz}$	2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
FB Current-Noise Density	$\mathrm{in}_{\mathrm{n}}(\mathrm{FB})$	$\mathrm{f}=100 \mathrm{kHz}$	22		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
SWITCHING CHARACTERISTICS					
Channel-Switching Time	tsw	(Notes 6, 7)	20		ns
Address-Setup Time	ts	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Notes 6, 8)	10		ns
Address-Hold Time	t ${ }_{\text {th }}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Notes 6, 8)	10		ns
Latch Propagation Delay	tLPD	(Note 6)	20		ns
Latch Pulse Width	tLPW	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}($ Notes 6, 8)	10		ns
Enable Delay Time	tPDE	(Notes 6, 9)	20		ns
Disable Delay Time	tPDD	(Notes 6, 9)	20		ns
Switching Transient	VTRAN	$\mathrm{A}_{\mathrm{V}}=6 \mathrm{~dB}$ (Notes 4, 10)	± 90		mV

Note 2: Does not include external feedback network resistance.
Note 3: Applies to all digital input pins (EN, LE, and AO).
Note 4: Specified with feedback network chosen for optimal AC performance. See Tables 1 and 2 for recommended component values.
Note 5: Input test signal: 3.58 MHz sine wave of amplitude 40IRE superimposed on a linear ramp (OIRE to 100IRE). IRE is a unit of video-signal amplitude developed by the International Radio Engineers. 140IRE = 1.0V.
Note 6: See timing diagram (Figure 5).
Note 7: Channel-switching time specified for switching between the two input channels; does not include signal rise/fall times for switching between channels with different input voltages.
Note 8: Guaranteed by design; not production tested.
Note 9: Output enable/disable delay times do not include amplifier output slewing times.
Note 10: Switching transient measured while switching between two grounded channels.

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4258/MAX4259 GAIN FLATNESS vs. FREQUENCY

 SM ALL-SIGNAL FREQUENCY RESPONSE

MAX4159

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4158/MAX4159 CHANNEL-TO-CHANNEL GAIN M ATCHING
vs. FREQUENCY

M AX4258/M AX4259
TOTAL HARM ONIC DISTORTION vs. FREQUENCY

M AX4258/MAX4259
CHANNEL-TO-CHANNEL GAIN M ATCHING
vs. FREQUENCY

M AX4158/M AX4159
LARGE-SIGNAL PULSE RESPONSE

OUTPUT IMPEDANCE vs. FREQUENCY

MAX4158/MAX4159
TOTAL HARM ONIC DISTORTION
vs. FREQUENCY

MAX4258/MAX4259 LARGE-SIGNAL PULSE RESPONSE

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

($\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

\qquad

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN			NAME	FUNCTION
$\begin{aligned} & \text { MAX4158 } \\ & \text { MAX4258 } \end{aligned}$	$\begin{aligned} & \text { MAX4159 } \\ & \text { MAX4259 } \end{aligned}$			
	SO	QSOP		
-	1	1	$\overline{\mathrm{EN}}$	Output Enable Logic Input. Connect $\overline{\mathrm{EN}}$ to logic low or leave open for normal operation. Connect to logic high to disconnect amplifier output (output is high impedance).
1	3	3	INO	Amplifier Input, Channel 0
2	$\begin{gathered} 2,4,6, \\ 8,10 \end{gathered}$	$\begin{gathered} 2,4,6, \\ 9,11 \end{gathered}$	GND	Power Supply, Analog and Digital Ground. Connect GND to ground plane for best RF performance.
3	5	5	IN1	Amplifier Input, Channel 1
-	-	7, 15	N.C.	No Connection. Not internally connected. Connect to ground plane for best RF performance.
4	7	8	V-	Negative Power-Supply Voltage
5	9	10	FB	Amplifier Feedback Input
6	11	12	V+	Positive Power-Supply Voltage
7	12	13	OUT	Amplifier Output
8	13	14	A0	Channel-Address Logic Input (see Truth Table)
-	14	16	LE	Latch-Enable Logic Input (see Truth Table)

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

\qquad Detailed Description
The MAX4158/MAX4159 are optimized for closed-loop gains (Avcl) of 1V/V (0dB) or greater; the MAX4258/ MAX4259 are optimized for closed-loop gains of 2V/V (6dB) or greater. These low-power, high-speed, cur-rent-mode feedback amplifiers operate from $\pm 5 \mathrm{~V}$ supplies. They drive video loads (including 50Ω and 75Ω cables) with excellent distortion characteristics. Differential gain and phase errors are $0.01 \% / 0.01^{\circ}$ for MAX4158/MAX4159 and $0.01 \% / 0.02^{\circ}$ for MAX4258/ MAX4259, respectively.

The input multiplexers feature very short switching times and small switching transients. They also have high input resistance and constant input capacitance, so overall input impedance can be set by external input terminating resistors. Each video input is isolated by an AC-ground pin, which reduces channel-to-channel capacitance and minimizes crosstalk.
The MAX4159/MAX4259 have address latching and an output enable function that places the output in a highimpedance state. These functions allow multiple mux/amps to be paralleled together to form larger switching arrays.

Truth Tables
Input Control Logic

| LOGIC
 INPUTS | | AMPLIFIER |
| :---: | :---: | :---: | :--- |
| INPUT | | |\quad FUNCTION

X = Don't Care
MAX4159/MAX4259 Output Control Logic

LOGIC INPUT (EN)	AMPLIFIER OUTPUT	FUNCTION
0	On	Output on
1	Off	Output off; high impedance

All logic levels ($\overline{E N}, L E$, and $A 0$) default low (0) if left open circuit. Output disable is completely independent of input address and latch.

Applications Information

Theory of Operation

 Since the MAX4158/MAX4159/MAX4258/MAX4259 are current-mode feedback amplifiers, their open-loop transfer function is expressed as a transimpedance, $\Delta \mathrm{V}_{\mathrm{OUT}} / \Delta \mathrm{I}_{\mathrm{FB}}$, or Z_{T}. The frequency behavior of this open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. That is, it has a large DC value and decreases at approximately 6 dB per octave at high frequency.Analyzing the current-mode feedback amplifier in a gain configuration (Figure 1) yields the following transfer function:

$$
\text { VOUT / VIN }=\mathrm{G} \times \mathrm{ZT}(\mathrm{~S}) /\left(\mathrm{ZT}(\mathrm{~S})+\mathrm{G} \times \operatorname{RIN}(\mathrm{FB})+\mathrm{R}_{\mathrm{F}}\right)
$$ where $G=A v C L=1+R_{F} / R_{G}$.

At low gains, $G \times \operatorname{RIN}(F B) \ll R F$. Therefore, unlike traditional voltage-mode feedback amplifiers, the closedloop bandwidth is essentially independent of closed-loop gain. Note also that at low frequencies, ZT >> [G $\left.\times \operatorname{RiN}(F B)+R_{F}\right]$ so:

$$
\text { VOUT / VIN = G = } 1+R_{F} / R_{G}
$$

Layout and Power-Supply Bypassing The MAX4158/MAX4159/MAX4258/MAX4259 have extremely high bandwidth, and consequently require careful board layout, including the possible use of con-stant-impedance microstrip or stripline techniques.

Figure 1. Current-Mode Feedback Amplifier

350MHz／250MHz，2－Channel Video Multiplexer－Amplifiers

To realize the full AC performance of these high－speed amplifiers，pay careful attention to power－supply bypassing and board layout．The PC board should have at least two layers：a signal and power layer on one side，and a large，low－impedance ground plane on the other side．The ground plane should be as free of voids as possible，with one exception：the feedback pin （FB）should have as low a capacitance to ground as possible．This means that there should be no ground plane under FB or under the components（ RF_{F} and R_{G} ） connected to it．With multilayer boards，locate the ground plane on a layer that incorporates no signal or power traces．
Regardless of whether or not a constant－impedance board is used，it is best to observe the following guide－ lines when designing the board：
1）Do not use wire－wrap boards（they are much too inductive）or breadboards（they are much too capacitive）．
2）Do not use IC sockets．IC sockets increase reac－ tances．
3）Keep lines as short and as straight as possible．Do not make 90° turns；round all corners．
4）Observe high－frequency bypassing techniques to maintain the amplifier＇s accuracy and stability．
5）Bear in mind that，in general，surface－mount compo－ nents have shorter bodies and lower parasitic reac－ tance，giving much better high－frequency performance than through－hole components．
The bypass capacitors should include a 10 nF ceramic surface－mount capacitor between each supply pin and the ground plane，located as close to the package as possible．Optionally，place a $10 \mu \mathrm{~F}$ tantalum capacitor at the power－supply pins＇points of entry to the PC board to ensure the integrity of incoming supplies．The power－ supply trace should lead directly from the tantalum capacitor to the $\mathrm{V}+$ and V －pins．To minimize parasitic inductance，keep PC traces short and use surface－ mount components．
Ground pins have been placed between input channels to minimize crosstalk between the two input channels． （The grounds extend inside the package all the way to the silicon．）These pins should be connected to a com－ mon ground plane on the PC board．
Input termination resistors and output back－termination resistors，if used，should be surface－mount types，and should be placed as close to the IC pins as possible．

Choosing Feedback and Gain Resistors

As with all current－mode feedback amplifiers，the fre－ quency response of the MAX4158／MAX4159／MAX4258／ MAX4259 is critically dependent on the value of the feedback resistor RF．RF，in conjunction with an internal compensation capacitor，forms the dominant pole in the feedback loop．Reducing RF＇s value increases the pole frequency and the－3dB bandwidth，but also increases peaking due to interaction with other nondominant poles．Increasing RF＇s value reduces peaking and bandwidth．
Tables 1 and 2 show optimal values for the feedback resistor（RF）and gain－setting resistor（ RG_{G} ）for all parts． Note that the MAX4258／MAX4259 offer superior AC per－ formance for all gains except unity gain（0dB）．These values provide optimal AC response using surface－ mount resistors and good layout techniques．The MAX4159／MAX4259 evaluation kit provides a practical example of such layout techniques．
Stray capacitance at FB causes feedback resistor decoupling and produces peaking in the frequency－ response curve．Keep the capacitance at FB as low as possible by using surface－mount resistors，and avoid－ ing the use of a ground plane beneath or beside these resistors and the FB pin．Some capacitance is unavoid－ able；if necessary，its effects can be counteracted by adjusting RF．1\％resistors are recommended to main－ tain consistency over a wide range of production lots．

Table 1．MAX4158／MAX4159 Bandwidth and Gain vs．Gain－Setting Resistors

GAIN		$\mathbf{R G}_{\mathbf{G}}$	$\mathbf{R F}_{F}$ (Ω)	－3dB BW $(\mathbf{M H z})$	$\mathbf{0 . 1 d B} \mathbf{~ B W}$ $(\mathbf{M H z})$
$\mathbf{(V / V)}$	$(\mathbf{d B})$		∞	430	350
1	0	∞	100		
2	6	110	110	200	110
5	14	32.5	130	80	12
10	20	14.5	130	40	6

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

Table 2. MAX4258/MAX4259 Bandwidth and Gain vs. Gain-Setting Resistors

GAIN		$\mathbf{R G}_{\mathbf{G}}$	$\mathbf{R F}$ (Ω)	$\mathbf{3 d B}$ BW $(\mathbf{M H z})$	$\mathbf{0 . 1 d B} \mathbf{B W}$ $(\mathbf{M H z})$
$\mathbf{(V / V)}$	$(\mathbf{d B})$				
2	6	510	510	250	130
5	14	45	180	195	92
10	20	20	180	90	14

DC Errors and Noise

The MAX4158/MAX4159/MAX4258/MAX4259 output offset voltage, VOUT (Figure 2) can be calculated with the following equation:
$V_{\text {OUT }}=V_{\text {OS }} \times\left[1+R_{F} / R_{G}\right]+I_{B} \times R_{S} \times\left[1+R_{F} / R_{G}\right]+$ $I_{F B} \times R_{F}$
where:

VOS	$=$ input offset voltage (in volts)
$1+R_{F} / R_{G}$	$=$ amplifier closed-loop gain (dimensionless)
I_{B}	$=$ input bias current (in amps)
$I_{F B}$	$=$ feedback input bias current (in amps)
R_{G}	$=$ gain-setting resistor (in ohms)
R_{F}	$=$ feedback resistor (in ohms)
R_{S}	$=$ source resistor (in ohms)

The following equation represents output noise density:

$$
\begin{aligned}
& e_{n}(O U T)=\left(1+R_{F} / R_{G}\right) x \\
& \left.\sqrt{\left[i_{n} \times r\right.} R_{S}\right]^{2}+\left[i_{n}(F B) \times\left(R_{F} \| R_{G}\right)\right]^{2}+\left[e_{n}\right]^{2}
\end{aligned}
$$

where:
in $_{n}=$ input noise current density (in $\mathrm{A} / \sqrt{\mathrm{Hz}}$)
$\mathrm{e}_{\mathrm{n}}=$ input noise voltage density (in $\mathrm{V} / \sqrt{\mathrm{Hz}}$)
The MAX4158/MAX4159/MAX4258/MAX4259 have a very low, $2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage. The current noise at the input (in) is $2 p A / \sqrt{H z}$, and the current noise at the feedback input (in(FB)) is $22 p \mathrm{p} / \sqrt{\mathrm{Hz}}$.
An example of DC-error calculations, using the MAX4258 typical data and the typical operating circuit with $\mathrm{RF}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=510 \Omega\left(\mathrm{RF}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{G}}=255 \Omega\right)$ and $\mathrm{R}_{\mathrm{S}}=50 \Omega$, gives:
VOUT $=\left[1 \times 10^{-3} \times(1+1)\right]+\left[2 \times 10^{-6} \times 50 \times(1+1)\right]+$ [$2 \times 10^{-6} \times 510$]
VOUT $=3.22 \mathrm{mV}$

Calculating total output noise in a similar manner yields the following:

$$
\begin{aligned}
& e_{\mathrm{n}(\mathrm{OUT})}=(1+1) x \\
& \sqrt{\left[\left(2 \times 10^{-12}\right) \times 50\right]^{2}+\left[\left(22 \times 10^{-12}\right) \times 255\right]^{2}+\left(2 \times 10^{-9}\right)^{2}} \\
& e_{\mathrm{n}(\mathrm{OUT})}=11.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

With a 200 MHz system bandwidth, this calculates to $168 \mu \mathrm{~V}_{\text {RMS }}$ (approximately $1.01 \mathrm{mVp}-\mathrm{p}$, using the sixsigma calculation).

Video Line Driver
The MAX4158/MAX4159/MAX4258/MAX4259 are optimized to drive coaxial transmission lines when the cable is terminated at both ends (Figure 3). Cable frequency response may cause variations in the flatness of the signal.

Figure 2. Output Offset Voltage

350MHz／250MHz，2－Channel Video Multiplexer－Amplifiers

Figure 3．Video Line Driver

Driving Capacitive Loads

A correctly terminated transmission line is purely resis－ tive and presents no capacitive load to the amplifier． Consequently，the MAX4158／MAX4159／MAX4258／ MAX4259 are optimized for AC performance and are not designed to drive highly capacitive loads．Reactive loads will decrease phase margin and may produce excessive ringing and oscillation（see Typical Operating Characteristics）．The circuit of Figure 4 reduces this problem．The small（usually 5Ω to 20Ω ） isolation resistor RISO，placed before the reactive load， prevents ringing and oscillation．At higher capacitive loads，AC performance is limited by the interaction of load capacitance with the isolation resistor．

Figure 4．Using an Isolation Resistor（RISO）for High Capacitive Loads

350MHz/250MHz, 2-Channel Video Multiplexer-Amplifiers

Input Voltage Range
The guaranteed input voltage range is $\pm 2.5 \mathrm{~V}$. Exceeding this value can cause unpredictable results, including output clipping, excessive input current, and switching delays.

Multiplexer
The input multiplexer (mux) is controlled by TTL/CMOScompatible address inputs (see Truth Tables.) There is no internal memory except the address latch (LE) on
the MAX4159/MAX4259. If power is first applied with the latch enabled, INO is selected.
Input capacitance is a constant, low 2 pF for either input channel, regardless of whether or not the channel is selected.
All logic levels ($\overline{E N}, L E$, and $A 0$) default low if left opencircuit.

Figure 5. Switching Timing Diagram

350MHz／250MHz，2－Channel
 Video Multiplexer－Amplifiers

Pin Configurations／Functional Diagrams／Truth Tables

TOP VIEW

MAX4159／MAX4259		
LE	A0	INPUT
0	0	IN0
0	1	IN1
1	X	LAST

X＝DON＇T CARE

MAX4159／MAX4259	
$\overline{\mathrm{EN}}$	OUTPUT
0	ON
1	OFF（HI－Z）

N．C．＝NOT INTERNALLY OONNECTED

Chip Information
TRANSISTOR COUNT： 239

350MHz/250MHz, 2-Channel
 Video Multiplexer-Amplifiers

D	. 337	. 344	8.56	8.74	$24 \mid A C$
S	. 0250	. 0300	0.64	0.76	

D	.386	.393	9.80	9.98	28	AD
S	.0250	.0300	0.64	0.76		

NDTES:

1. D \& E DU NDT INCLUDE MLLD FLASH

IR PRUTRUSIUNS
2. MILD FLASH GR PRUTRUSIGNS NDT TI EXCEED .006"
3. CDNTRDLLING DIMENSIUNS: INCHES

NVINXI/VI

 21-0055

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

